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Abstract— Recent years have seen notable advancements in
wildfire smoke detection, particularly in Uncrewed Aircraft
Systems (UAS)-based detection employing diverse deep learn-
ing (DL) approaches. Despite the promise exhibited by these
approaches, the task of detecting smoke from UAS imagery
remains challenging due to difficulties in differentiating smoke
from similar phenomena such as clouds and water. This work
introduces a novel DL-based method for smoke detection from
UAS visual observations. The core idea involves segregating
forest areas from non-forest regions, such as sky and lake,
and exclusively applying smoke detection to forested areas,
thus eliminating the chance of misidentifying clouds and wa-
ter as smoke. Specifically, we utilized a Mask Region-Based
Convolutional Neural Network (Mask R-CNN) for semantic
segmentation to remove non-forest regions (e.g., sky and lake):
Subsequently, a customized You Only Look Once-version 7
(YOLOvV7) model was trained to detect smoke within the forest
areas. The proposed method was validated on an image dataset
collected from our previous prescribed burn experiment, where
we extracted 246 images to train both MASK R-CNN and
YOLOVvV7 models. Additionally, we extract another 128 images
to validate and confirm the efficacy of our enhanced wildfire
smoke detection approach. The test results demonstrate that our
proposed approach, employing MASK R-CNN and YOLOvV7
models, outperforms the YOLOv7-only model by 25.3% in
precision, 18.7% in recall, and 45% in mean Average Precision
(mAP).

I. INTRODUCTION

Wildfires pose significant threats to ecosystems, human
life, and economies, intensified by climate change, empha-
sizing the critical need for timely detection and control
methods. Traditional wildfire detection methods, relying on
remote sensors like gas, smoke, temperature, and flame
detectors, have limitations in delayed response and limited
coverage [1]. Thanks to recent advancement of computer
vision techniques, such as object detection [2] and image
segmentation [3], the detection of wildfires based on visual
features becomes an effective and efficient option. Moreover,
with the recent advancement in robotics, employing un-
crewed aircraft systems (UAS) in wildfire detection becomes
a feasible and cost-effective alternative to traditional manned
aircraft surveys. Computer vision techniques, particularly
smoke detection using UASs, emerge as crucial tools in
addressing the challenges posed by wildfires, mitigating their
environmental and societal impacts.
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Fig. 1. An overview of smoke detection using conventional method and
our proposed method. Conventional Method detects smoke using smoke
detector (e.g., YOLOV7), but this method produce high error detection rate
as we can see it detects sky as smoke. In our method, we first separate the
forest area from the non-forest areas (e.g., sky and lake) using the Image
Segmentator (e.g., Mask R-CNN) and then apply the Smoke Detector.

A common setting in computer vision-based wildfire de-
tection is designing a deep learning (DL) model to detect
smokes in images captured from the UAS’s onboard cameras
[3], [4]. A primary challenge is the inherent similarities
between smoke and various background elements such as
clouds, sky, lake and sunlight [S]. To address this research
gap, we propose a two-stage DL-based approach for UAS-
based smoke detection. This approach effectively identifies
non-forest regions, such as sky and lake areas, and eliminates
them from the images. The primary objective is to minimize
the detection error rates and mitigate false alarms associated
with mis-detection in the presence of complex environmental
backgrounds.

The proposed methods involves two steps: semantic seg-
mentation and smoke detection. First, we developed a DL
model to perform semantic segmentation on images ob-
served from the UAS’s onboard camera to separate forest
areas. We focus on the forest area since wildfire smoke
comes from the ground (forest), thus, sky and lake will
be considered as noisy background. Then, we designed a
smoke detector to automatically sense smokes in forest areas,



eliminating the possibility of mismatching clouds as smokes.
By doing so, we intend to enhance the overall accuracy
and reliability of UAS-based smoke detection, contributing
to more effective wildfire management strategies. Figure 1
provides an overview comparing wildfire smoke detection
using the You Only Look Once-version 7 (YOLOvV7) only
method (conventional method) and our proposed method,
which combines Mask Region-Based Convolutional Neural
Network (Mask R-CNN) and YOLOv7 models.

In summary, the primary contributions of this paper are
outlined as follows:

1) We propose an improved approach for detecting wild-
fire smoke, utilizing both the Mask R-CNN and
YOLOvV7 models. In this approach, the mask R-CNN
effectively eliminates the non-forest regions from the
images by segmenting them.

2) We collected an image dataset containing UAS wildfire
images for DL training and applied various data aug-
mentation technqiues to facilitate the trianing process.

3) We compared the proposed method with conventional
smoke detection method to validate the effectiveness
of our proposed method. For this purpose, we curated
a new test dataset comprised of wildfire smoke images
sourced from UAS imagery. This dataset predomi-
nantly includes images showcasing non-forest regions,
specifically the sky and lake areas.

The remaining of the paper is organized as follows:
Section II provides the current research on deep learning
techniques for smoke detection and segmentation. In section
II, we discuss the model preliminaries and the architec-
tures of Mask R-CNN and YOLOvV7 models. In section
IV, we present an overall methodology which is capable
of detecting forest fire smoke from UAS imagery and the
proposed method that combines the Mask R-CNN [6] and
YOLOv7 [7] for detecting the smoke from UAS images
with more accuracy. Finally, in section V, we examine the
experimental results and compare the accuracy of of our
proposed approach with the YOLOv7 model for forest fire
detection.

II. RELATED WORKS
A. Smoke Detection Techniques

Smoke detection in forest fires presents a significant
challenge due to the intricate and dynamic nature of the
background, compounded by environmental factors like fog,
rain, and varying lighting conditions. This complexity makes
deep learning (DL) techniques for wildfire smoke detec-
tion demanding. Recent research has focused on innovative
approaches. Zhang et al. [8] introduced Faster R-CNN for
smoke detection, eliminating manual feature extraction. Wu
et al. [9] compared object detection models, highlighting
SSD for real-time and accurate early fire detection. Saponara
et al. [10] demonstrated improved smoke detection using
YOLOV2.

In the context of Uncrewed Aircraft Systems (UASs), Jiao
et al. [11] employed YOLOV3 for forest fire detection, while

Jeong et al. [12] proposed a YOLOvV3-LSTM hybrid. Peng
et al. [13] enhanced smoke detection using SqueezeNet,
showing superior speed and accuracy. Models with prun-
ing, reconstruction, clustering [14], generalization [15], and
color-motion features [16] further improve efficiency.

To address overlapping spectral signatures, Mukhiddinov
et al. [5] modified YOLOVS, excelling in small smoke region
detection. Kim et al. [17] introduced YOLOV7, effective but
challenged by complex backgrounds. Xu et al. [18] used deep
saliency networks, while Wang et al. [19] combined SSD
with ViBe for video smoke detection. Jia et al. [20] and
Choi et al. [21] integrated domain knowledge and SlowFast
models, respectively, for enhanced detection.

These advancements highlight the diverse strategies em-
ployed to address the challenges in wildfire smoke detection
using DL methods.

B. Smoke Segmentation Technques

Smoke, with its translucent and irregular characteristics,
poses a complex challenge in image segmentation due to
its intricate blending with the background. Small or thin
smoke adds to the difficulty of accurately segmenting smoke
from images. Existing segmentation algorithms struggle with
capturing the variable size and translucent nature of smoke,
resulting in challenges like missed or incorrect segmentation
at the edges.

To address these challenges, Yuan et al. [22] proposed a
deep smoke segmentation network functioning as an encoder-
decoder Fully Convolutional Network (FCN) with skip struc-
tures. This network demonstrates superior differentiation be-
tween fog, clouds, and smoke, minimizing misclassifications
of fog and cloud pixels as smoke. Another study introduced
the Classification-assisted Gated Recurrent Network (CGR-
Net) [23], incorporating an Attention Convolutional GRU
module (Att-ConvGRU) to extract distinguishable features,
especially in scenarios with small, semi-transparent, or in-
conspicuous smoke.

Sun et al. [24] proposed a semi-supervised learning-based
fire instance segmentation method addressing challenges
related to limited labeled datasets. Smoke-U-Net [25], a
multi-scale semantic segmentation approach, utilizes Multi-
Scale Residual Group Attention (MRGA) in conjunction with
U-Net and an encoder Transformer to extract multi-scale
smoke features, notably improving the perception of small-
scale smoke.

Jia et al. [26] introduced a cGAN-based model for auto-
matic smoke region segmentation in successive video frames,
demonstrating superior speed compared to saliency-based
methods. However, segmentation success is highly dependent
on the dataset. Convolutional Neural Network-based archi-
tectures [27] have shown efficiency in real-time segmentation
for smoke and fire detection, surpassing other architectures.
VSSNet [28], a 3D convolutional neural network, enhances
segmentation accuracy and reduces false positives in complex
natural scenes.



C. Smoke Detection and Segmentation Techniques

Accurately isolating smoke in single images is a challeng-
ing task, given the inconspicuous nature of small smoke,
complex textures resulting from blending with diverse back-
grounds, the multi-scale nature of evolving smoke, and in-
terference from smoke-like objects such as haze and clouds.

Khan et al. [29] proposed an efficient smoke detection
and semantic segmentation framework for clear and hazy
outdoor environments. The method combines a pretrained
EfficientNet for smoke detection and DeepLabv3 CNN for
semantic segmentation. While showing satisfactory real im-
agery results, the lack of quantitative assessment raises
concerns about generalizability to diverse wildfire scenarios.
Ghali et al. [30] introduced a deep ensemble learning method,
combining various deep convolutional models and vision
transformers to address background complexity and small
wildfire areas.

Xiong et al. [31] presented an SVM-based semantic seg-
mentation using a superpixel merging algorithm to efficiently
distinguish smoke from other elements, especially clouds.
Wau et al. [32] proposed a sparse representation-based method
for video-based smoke classification and detection. Cao et
al. [33] introduced EFFNet, an enhanced feature foreground
network for smoke analysis in videos, emphasizing not only
smoke detection but also locating the source of smoke
through semantic segmentation.

Compared to exisitng smoke detection and segmentation
methods, our proposed method is novel since we combine
the benefits from smoke detection and segmentation. Unlike
traditional methods, we adopt a two-step process. Firstly, we
employ an image segmentation model to distinguish forest
areas from non-forest regions, such as the sky and lake,
effectively eliminating objects with similarities to smoke.
Subsequently, the smoke detection model is applied exclu-
sively to images containing forested areas, minimizing the
chances of error detection in non-forest regions. This novel
strategy enhances the accuracy and reliability of our smoke
detection methodology.

ITII. PRELIMINARIES OF MASK R-CNN AND
YOLOvV7

Since this work is built upon two computer vision models,
i.e., Mask R-CNN and YOLOV?7. It is necessary to introduce
these two models before introducing our proposed method.

A. Mask R-CNN Architecture

Mask R-CNN [6] is a deep learning (DL) model designed
for image segmentation task. The architecture of the Mask
R-CNN model, can be divided into two primary components:
1) The convolutional backbone, which conducts feature ex-
traction across the entire image; 2) The network head, which
handles individual aspects of bounding-box recognition (i.e.,
classification and regression) and mask prediction for each
Region of Interest (Rol).

Fig. 2 presents the architecture of Mask R-CNN [6].
Initially, a pre-trained CNN like ResNet [35] serves as the
backbone to process the input image and capture essential
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Fig. 3. Network Architecture of YOLOv7. The image is retrieved from
[37].

features, generating Feature Maps. Following this, the Re-
gion Proposal Network (RPN) operates on the backbone’s
feature map, suggesting potential regions or bounding boxes
that may contain objects in the image. After RPN generates
these proposals, the ROIAlign (Region of Interest Align)
layer is introduced to address alignment issues and precisely
extract features for accurate pixel-wise segmentation.

The outputs of Mask R-CNN include three components,
a binary mask for object segmentation, bounding boxes
of detected objects in the image, and the categories of
the objects. Specifically, a mask head is responsible for
creating segmentation masks for each proposed region. By
utilizing the features aligned through ROIAlign, the mask
head predicts binary masks, outlining pixel boundaries for
each object. Other two outputs, i.e., bounding box locations
and object categories, are computed via two branches with
fully-connected (FC) layers.

B. YOLOv7 Architecture

YOLOv7 [7], the latest variant in the YOLO model
family [36], introduces key advancements. It incorporates the
Extended Efficient Layer Aggregation Network (E-ELAN) to
efficiently manage short and long gradient paths, enhancing
learning capabilities. Additionally, YOLOvV7 addresses model
scaling for concatenation-based models, tailoring character-
istics for diverse applications.

The YOLOV7 architecture, illustrated in Fig. 3, comprises
backbone, neck, and head components. The backbone gener-
ates diverse feature maps, preserving multi-scale information.
The neck merges these maps, incorporating fine-grained
details and deep semantic information. The head transforms
integrated features into detection predictions.



The backbone extracts features using four CBS modules,
including Convolution, Batch normalization, and SiLU acti-
vation function. The E-ELAN and MP modules sequentially
extract features, resulting in three E-ELAN modules that feed
into the neck. The MP module combines MaxPool and CBS,
while the E-ELAN module consists of multiple convolutional
layers. Outputs from E-ELAN modules are input to the neck
network.

The neck, adopting a Path Aggregation Feature Pyramid
Network (PAFPN) structure, combines elements from FPN
[38] and PANet [39]. The SPP structure extracts attributes at
multiple scales, and the CSP design results in the SPPFCSPC
structure, expanding the network’s perception. Rep modules,
adjusting channel numbers, follow PAFPN.

Sequential feature extraction concludes with 1x1 con-
volutions, integrating features for a seamless transition to
actionable predictions within the YOLOvV7 framework.

IV. IMPROVED WILDFIRE SMOKE DETECTION
USING MASK R-CNN AND YOLOV7

This study aims to enhance the precision of wildfire smoke
prediction through the integration of the YOLOv7 model
using UAS imagery. As detailed in related studies (Section
Il), detecting wildfire smoke remains challenging due to
its similarity to various background elements, such as sky
and lake regions, along with varying lighting conditions.
Moreover, accurate smoke predictions using DL methods
are hindered by the limited availability of labeled image
dataset for wildfire smokes. To address these challenges, we
propose an improved wildfire smoke detection approach that
leverages both mask R-CNN and YOLOV7.

A. An Overview of the Proposed Methods

The proposed methodology, illustrated in Fig. 4, follows a
systematic approach to enhance forest fire smoke detection.
Initially, a Forest Segmentator, represented by a Mask R-
CNN model, is employed to conduct image segmentation,
effectively extracting non-forest regions, such as sky and
lake areas. Subsequently, a binary mask is generated based
on the segmented image, excluding the identified Non-
Forest regions. Finally, a Forest Smoke Detector, utilizing
the YOLOv7 model, is applied to detect smoke specifically
within the masked image, which now contains only forest
regions. This sequential process ensures a focused and accu-
rate detection of smoke specifically within the forested areas
of the images.

B. Smoke Detection using YOLOv7 Model

In our methodology, we fine-tuned the YOLOvV7 model
using a dataset specifically collected from UAS imagery,
focusing on forest fire smoke images for smoke detection.
The initial model was pre-trained on the MSCOCO dataset
[7]. Subsequently, we trained our model using the collected
dataset. To evaluate the model’s performance, we utilized
an unseen test dataset. During this assessment, we observed
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Fig. 4. Overall framework of our proposed method. In our approach, the
original image denoted as X serves as the input to the Image Segmentator
function, represented by fasr. The resulting output, denoted as Xg,
represents the Segmented Image. A Binary Mask, designated as Mask,
is generated based on this Segmented Image (Xg). The Masked Image,
denoted as Xz, is then obtained through element-wise multiplication
between the Original Image (X) and the Binary Mask (M ask). Finally,
the Masked Image (X /) is fed into the Smoke Detector function, denoted
as fy, providing the ultimate prediction for smoke detection.

instances of misidentification, notably in images with back-
grounds such as sky and lake regions. These areas, predom-
inantly categorized as non-forest regions within the wildfire
smoke dataset, posed challenges for accurate identification.

C. Mask Generation and Smoke Detection

To address misdetection in non-forest regions, our strategy
involves creating a binary mask for exclusion. Using a Forest
Segmentator, implemented by a Mask R-CNN model trained
on the same dataset as the YOLOvV7 model, we segmented the
input images into forest and non-forest regions, including the
sky and lake areas. The segmentation process is represented
as follows:

Xs = fur(X) (D

where far is the Image Segmentator, X is the imput image
and Xg is the segmented image, as Fig. 4 illustrated.

Subsequently, a binary mask corresponding to these forest
and non-forest regions was generated from the segmented
image, Xg to create the masked image:

1 if (4,5) € Forest

2
0 if (i,5) € Non — Forest @

Mask(i, j) = {
where Mask is the binary mask, and (4, j) represents the
position of pixel values in the segmented image, Xg, as
depicted in Fig. 4.

The masked image of the original image was generated
by applying the binary mask to the image, effectively elim-
inating the non-forest areas and minimizing the chances of
smoke misdetection in those regions:

Xy = X x Mask 3



where X is the masked image of the original image and
(*) represents element-wise multiplication.

The resulting masked image, containing only forest re-
gions, was then fed into the Forest Smoke Detector, repre-
sented by the YOLOvV7 model, for smoke detection:

Xp = fy(Xum) “4)

where fy is the Forest Smoke Detector and Xp is the
predicted image for smoke detection, as illustrated in Fig.
4.

Notice that we can express the expected value of the smoke
detector (e.g., YOLOvV7) for the original image, X, by the
total sum of the probabilities. That is,

E(fy (X)) = P(smoke)
= P(smoken forest)+ 3)
P(smoke Nmon — forest)
Furthermore, given the masked image, X s, we have,
E(fy (X)) = P(smoke N forest)
= P(smoke|forest) - P(forest)  (6)
< E(fy(X))

where E(fy (X)) and E(fy (X)) are the expected values
of smoke detector for X and X, respectively. P(smoke)
represents the probability that the smoke detector detects the
smoke, and P(forest) represents the probability that the
area is forest. Hence, P(smoke|forest) is the probability
that the smoke detector detects smoke, given that this is a
forest area.

V. EXPERIMENTS AND RESULTS

This section outlines the experimental setup and the
outcomes related to wildfire smoke detection, employing
both the YOLOv7 model and a novel hybrid approach
that integrates mask R-CNN with YOLOv7 for enhanced
performance in smoke detection.

A. Video Recording from Prescribed Burn

In May 2022, we collaborated with the Tall Timber fire in-
stitution to conduct a prescribed burn at Tallahassee, Florida.
Fig. 5(a) shows the satellite image of the prescribed burning
area. The size of the burn area is approximately 9 acres,
which is a forest land inside the Tall Timber fire institution.
In the spring season, the Tall Timber fire institution conducts
a prescribed burn to eliminate weeds and fertilize the land.

During the prescribed burn, we deployed a multirotor UAS
and successfully collected data during the burn. In the flight,
the UAS started at the downwind area of the burning region
and flew upwind toward the burning region. The UAS was
remotely controlled by a human operator, and the sensor data
was transmitted to the ground station for live monitoring of
the wildfires. Fig. 5(b) presents the trajectories of the flight,
which was recorded from the onboard GPS. We can see that
the UAS crossed the burning areas multiple times to collect
the environmental data. The flight was conducted at the early
phase of the prescribed burn, i.e., right after the ignition, and
returned to the ground after around 15 minutes.

(@ (b)

Fig. 5. Deploying an UAS in a prescribed burn to collect environment
data. (a) The prescribed burn area (highlighted with the blue color). (b) The
flight trajectory of the UAS, where the UAS is controlled by the human
operator. The labeled position in the diagram is the start position.

B. Evaluation Metrices

To evaluate the effectiveness of our models, we employ 3
key metrics, including precision, recall, and mean Average
Precision (mAP). Precision (P) and recall (R) are computed
using the formulas in equation 7 where True Positives
(TP) denote instances where the predicted value aligns with
the true value, and False Positives (FP) represent incorrect
detections. Instances where the detection model fails to
identify a ground truth are classified as False Negatives
(FN). True Negatives (TN) occur when the detection model
correctly recognizes the absence of an object in images
without objects.

TP TP
P= TP+ FP’ r= TP+ FN’

Analyzing inequality 6, it is evident that utilizing the mask
decreases the probability of smoke detection. This is due
to the decrease in the value of TP + FP for fy(Xu).
This reduction leads to an enhancement in precision, as
defined by equation 7. The model’s average precision (AP)
corresponds to the area under the curve of the Precision-
Recall (P(R)) Curve, where higher values indicate superior
classifier performance.

)

AP:/lP(R)dR
0

In target detection, the model typically identifies multiple
classes of targets, each plotting its own PR curve and
calculating an AP value. The mean Average Precision (mAP)
represents the average of the APs across all classes.

1 N
AP = - AP
m Nzlj :

where IV is the number of classes in the test images.

C. Dataset Preprocessing

To generate training images, we extracted 246 frames from
a UAS-recorded video during a prescribed burning experi-
ment, sampled at one frame every 3 seconds and recorded
at 30 frames per second with a resolution of 1920 x 1080.
Designated as ‘Dataset-1’, this dataset was used for YOLOv7
and Mask R-CNN training for smoke detection and forest



segmentation. The images within ‘Dataset-1" were resized to
640 x 640 pixels for consistency in the evaluation process.

Additionally, we created ‘Dataset-2’, comprising 128 un-
seen smoke images from the UAS video for testing. Em-
phasizing non-forest regions like sky and lake, ‘Dataset-2’
serves for evaluating our wildfire smoke detection approach.
Roboflow [40] was utilized as the annotation tool for accurate
bounding boxes and polygons delineation.

To assess YOLOV7 performance, diverse predefined aug-
mentation techniques in Roboflow were systematically ap-
plied to ‘Dataset-1’. These included rotation (-10° to +10°),
shear (£15° horizontally and vertically), hue adjustment (-25°
to +25°), saturation adjustment (-25% to +25%), brightness
adjustment (-25% to +25%), exposure adjustment (-25% to
+25%), blur (up to 2.5px), and noise (up to 1% of pixels).
Post-augmentation, the resulting augmented dataset, labeled
as ‘Dataset-3’, enriched the training set for a comprehensive
evaluation of YOLOV7’s robustness in detecting prescribed
wildfire smoke.

D. Smoke Detection using YOLOv7

To evaluate the effectiveness of YOLOv7, we conducted
experiments using various versions of pre-trained models,
including standard models such as YOLOv7 and YOLOV7-
W6, as well as a compound scaling model named YOLOV7-
X. All these models were trained utilizing the Microsoft
COCO dataset [7]. The parameter counts for these pre-
trained YOLOv7 models are 36.9 million, 70.4 million, and
71.3 million for YOLOvV7, YOLOvV7-W6, and YOLOvV7-X,
respectively [7].

The training of YOLOv7 models involved consistent pa-
rameters across different pre-trained versions. We set the
number of training epochs to 100, with a batch size of 16.
The training utilized two distinct datasets, namely ‘Dataset-
I’ and the augmented set ‘Dataset-3’, while performance
evaluation was conducted on the test dataset, ‘Dataset-2’.
During testing, specific parameters were applied, including
an IoU (Intersection over Union) threshold of 0.65 and a
confidence score threshold of 0.01.

From Fig. 7 (a)-(e), we observe that by employing
YOLOv7-only, instances of wildfire smoke misdetection
occur and these misdetections commonly occur in images
dominated by non-forest regions, particularly in sky and lake
areas, as well as in lake regions illuminated by sunlight. This
insight underscores the importance of robustly addressing
detection challenges in diverse environmental contexts.

E. Exclusion of Non Forest Regions using Mask R-CNN

In the segmentation aspect of our experiments, we em-
ployed Detectron 2 [41] to train a pre-trained version of
the Mask R-CNN model using ‘Dataset-1’. This aimed to
effectively segment non-forest regions, specifically sky and
lake, in the images. The pre-trained Mask R-CNN model
was obtained from the ‘Detectron2 Model Zoo’, housing
official baseline models trained with Detectron2. For this
purpose, we selected the COCO Instance Segmentation Base-
line model with Mask R-CNN ‘R50-FPN’ [42], utilizing a

(a) (b)
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Fig. 6. Examples of semantic segmentation of ‘forest’ and ‘non-forest’
and masked images with forest regions only. (a), (b), (c) are results from
semantic segmentation using Mask R-CNN. (d), (e), (f) are masked images
obtained using Eqn. 3.

ResNet+FPN backbone with standard convolutional and fully
connected heads for mask and box prediction.

We employed polygons to identify the boundaries of
both forest and non-forest regions in the images, labeled as
‘forest’ and ‘non-forest’, respectively. We trained the Mask
R-CNN model to perform segmentation of images into forest
and non-forest regions. Subsequently, the trained model was
applied to the test dataset ‘Dataset-2’ to predict ‘forest’ and
‘non-forest’ regions in images.

The segmented images were then utilized to generate
masks specifically for non-forest regions within the images.
This involved setting all pixel values corresponding to non-
forest regions to zero, following the process discussed in
section IV-C, effectively creating a mask representing the
non-forest areas within the images. This segmentation pro-
cess provides a critical foundation for assessing the precision
of our proposed approach in identifying and isolating forest
regions affected by prescribed wildfire smoke.

In Figure 6, we illustrate instances of segmentation for
non-forest regions and the subsequent creation of masks for
these segmented areas. Our observations indicate a notable
accuracy in effectively excluding non-forest regions from
images that predominantly feature such areas, especially in
the sky and lake regions, including lake areas illuminated by
sunlight. This underscores the efficacy of our segmentation
strategy in accurately identifying and isolating prescribed
wildfire smoke-affected areas within the overall imagery.

F. Comparison of Proposed approach for smoke detection
using YOLOv7

The rationale behind our approach is to eliminate non-
forest regions, particularly sky and lake areas, as these
regions share complex and sometimes similar characteristics
with smoke. As discussed in Section V-E, we excluded the
sky and lake regions from the images. Subsequently, we
utilized these modified images, excluding non-forest regions,
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Smoke Detection using conventional approach of YOLOv7-only model and our proposed approach using Mask R-CNN and YOLOv7 models.

(a), (b), (c), (d), (e) are results from conventional approach. (f), (g), (h), (i), (j) are results from our approach.

TABLE I
COMPARISON OF EVALUATION METRICES BETWEEN THE YOLOV7
MODEL AND OUR PROPOSED APPROACH EMPLOYING BOTH MASK
R-CNN AND YOLOV7 MODELS

Model Precision Recall mAP
Before | After Before | After Before | After
Mask Mask | Mask Mask | Mask Mask
YOLOvV7 0.318 0.398 | 0.300 0.356 | 0.131 0.190
YOLOvV7-w6 | 0.374 0.407 | 0.238 0.297 | 0.148 0.158
YOLOV7-X 0.347 0.432 | 0.305 0.297 | 0.227 0.260

to predict wildfire smoke using the YOLOv7 model, which
constitutes our proposed methodology.

Table I presents the performance metrics of our proposed
wildfire smoke detection approach, employing Mask R-CNN
and YOLOv7 models, compared to the YOLOv7-only model.
The evaluation metrics were computed using the test dataset,
‘Dataset-2’.

Upon comparing the performance of YOLOv7 models, as
outlined in Table I, we observed that our proposed method,
employing Mask R-CNN and YOLOvV7 models for smoke
detection, achieved higher accuracy than the conventional
approach using YOLOv7 only. To validate our approach,
we utilized the test dataset ‘Dataset-2’, where a significant
portion of the data was manually selected, emphasizing more
examples with complex backgrounds and non-forest regions
within the images.

Figure 7 provides visual examples of wildfire smoke detec-
tion using both the conventional approach of YOLOvV7 model
and our proposed approach employing Mask R-CNN model
with YOLOv7 model. The results illustrate that excluding
non-forest regions from images, especially those containing
sky and lake regions (including areas illuminated by sun-
light), leads to improved performance and a substantial in-
crease in accuracy. This underscores the effectiveness of our

methodology in enhancing the precision of wildfire smoke
detection in challenging scenarios with diverse backgrounds.

VI. CONCLUSIONS

In our analysis, we identified challenges in YOLOv7-based
forest fire smoke detection, especially in the presence of non-
forest elements like sky and lake, and difficulties in cap-
turing smoke accurately in challenging lighting conditions.
To enhance precision, we propose an improved approach
leveraging mask R-CNN and YOLOv7 models. Our method
exhibits notable accuracy improvements, particularly in im-
ages with non-forest elements. Integrating the mask R-CNN
minimizes smoke misdetection by segmenting non-forest
areas, addressing challenges posed by complex backgrounds
and enhancing overall precision.

To assess YOLOV7’s precision, we explored diverse pre-
trained versions on both original and augmented datasets,
providing a comprehensive evaluation of adaptability and
performance across scenarios. For validation, we curated a
dataset emphasizing non-forest elements, resulting in en-
hanced accuracy, reinforcing our approach’s effectiveness.

In addition, by analyzing equation 6, we can identify two
extreme situations. If the mask doesn’t cover any part of the
image, the probability of forest remains at 1. Consequently,
the expected value of the smoke detector, both before and
after applying the mask to the image, remains unchanged,
rendering the masking process ineffective. On the contrary,
when the mask covers the entire image, the probability of
forest becomes zero. Consequently, the expected value drops
to zero, indicating the absence of smoke detection.

In conclusion, our improved methodology advances UAS-
based wildfire smoke detection, addressing challenges and
paving the way for more accurate and reliable strategies.
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